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COMPUTER SIMULATION STUDIES OF THE TEARING MODE
INSTABILITY IN A FIELD-REVERSED ION LAYER

I. INTRODUCTION

The advent of pulsed, high power ion sources during

the last several years has stimulated renewed interest in

the formation of field-reversed configurations (FRC) with

ion rings or layers. Similarly, the availability of intense,

long duration neutral beams has focused attention on the

possibility of forming field-reversed configurations in an

2
ordinary magnetic mirror by either ion layers or plasma

currents. Presently, thermonuclear reactors based on such

field-reversed configurations look very attractive because

their anticipated high power density might lead to relative

low cost and modest size systems.
4

The usefulness of ion ring or layer generated FRC rests

very heavily on their stability. As a result of the complexity

of the problem, no comprehensive treatment of the stability of

such states is presently available. However, all the results

obtained so far are very encouraging. Using the energy prin-

ciple Sudan and Rosenbluth5 have shown with a hybrid model

that a field-reversed ion layer immersed in a background

plasma is stable against MHD kink modes when its aspect ratio

(= major radius/minor radius) is near unity. Lovelace6 had

arrived earlier at a similar conclusion. Uhm and Davidson
7

have treated the stability of a field-reversed layer for

frequencies near multiples of the mean rotational frequency
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of the layer. They have found that these instabilities,

which are of primary concern can be easily stabilized by

introducing transverse temperature in the rotating ions of

the layer. Finn and Sudan8 have investigated the effect of

particle resonances on low-frequency magnetohydrodynamic

modes in a field reversed, long ion layer.

The tearing modes, i.e., low frequency instabilities

that break up a very long layer into several rings have been

studied by Marx9 and recently by Uhm and Davidson.1
0 Fowler I1

has found that finite length layers are stable to tearing

modes as a consequence of axial kinetic pressure. Using a

hybrid model, in which the ion layer is treated kinetically

and the background plasma as a fluid, Uhm and Davidson extended

the calculation of Fowler to infinitely long layers and have

shown that when the axial velocity spread Av exceeds a

critical value Lvcrit, the layer does not break into rings,

i.e., is stable to the tearing mode.

In this paper, we report results from the numerical

simulation of an infinitely long, space-charge neutral ion

layer. The numerical results give a Av crit that is in

excellent agreement with the theory. However, the growth

rates predicted by the theory are always greater by a factor

of two than those found from the code. An interesting result

of the simulation is that although close-fitted metal walls

always improve the stability of an unstable layer, there
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are conditions under which a conducting shell that is not very

near the outer edge of the layer can have an adverse effect on

the stability of the layer.

In Section II of this paper we give a brief description

of the particle-in-cell code used for these studies. The

initiation of the rigid rotor equilibrium with finite tem-

perature is also described as are the basic diagnostics for

determining the energy of the magnetic field spectrum. The

linear theory for the onset of the tearing mode is reviewed

in Section III. It is clear from the interpretation of the

threshold condition that there exist regimes where the presence

of a conducting wall can have a destabilizing influence on the

tearing mode. In Section IV we present the results of the

simulation which confirm the existence of the threshold con-

dition as determined by the thermal spread in the parallel

velocity Vz and the geometric position of the beam.

The effect of wall destabilization is also demonstrated

as discussed in the conclusion presented in Section V.

II. DESCRIPTION OF THE CODE

a) Field Solver

The dynamics of reversed magnetic field ion layers are

studied in a cylindrical, azimuthally symmetric (r,z) geom-

etry using a 2D-3V particle simulation code.1 2  The annular

proton layers are space-charge neutralized by electrons which

follow the radial and axial motion of ions thus cancelling

3i.



the ion current in these directions. The electrons, however,

do not cancel the azimuthal ion current. Thus, Maxwell's

equations reduce to

AA

8  rz  - o0

where Aa (r,z,t) is the magnetic vector potential, Ja (r,z,t)

is the self consistant ion current and P is the permeability

of free space.

For this azimuthally symmetric system Bz and Br are

obtained by differentiating A6 . The canonical angular momentum

Pe= r(m i V8 + qAe) is a constant of the motion and is used to

find Va of each ion.

The magnetic vector potential Aa is solved on a two

dimensional (r,z) grid (typically 32 x 32 but expandable to

32 x 128) by Fourier analysis in the axial direction and by

Gaussian elimination in the radial direction. The system is

periodic in z and is enclosed radially by a perfectly con-

ducting wall. The standard five point difference operator

is used to represent the differential operator V2 .

The equations of motion are solved in a leapfrog scheme.

4



VT+ = e e AT+
i iriT+ - M i

M. 1 T++i
V T+l VT + T+ lI

R. VR M iTV

vT+I = vT  -AT ei VT+ T+
z z M. R.1 1 1 2.

rT + 3 / 2  rT+ + AT VT+l
1r + VR.1

zT+3/2 = ZT+ + AT VT+l

where AT is the unit timestep and T is the time. The

fields B ., Br. and vector potential Ae are found at the

particle positions by volume averaging the fields at the

four nearest cells.

The field solver and particle pusher are not naturally

time centered. The lack of centering can and does cause the

solution of the field solver to become numerically unstable.
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To obtain a numerically stable solution we rewrite the

differential equation for A as

/ T+3/2 +T+3/2
v2 AK+l + )

- T+ 3/ 2  + A(T+3/2 A +3/2)K " -\K+

where A T+3/2 = A ((T + 3/2)At) is the new solution,
K+l/

A T = A0  T + 1/2)A is the solutibn from the previous

time step,

' T+3/2 = J@ T+3/2)Lt =ne im i - q Ak. ' mp

K . m

a is a suitably chosen constant

P is the canonical angled momentum of the i th

particle,

ri is the radial position of ith particle,

Ak,i +3/2 evaluated at the position of the ith

particle and K is the iteration number.

The equation can be written as

6



SA K+- 2ctAK+l

= 2 J K - 72A - 2A K

= 2J K - (72A - 2A K) 4 4A K

= SK+l

with

SK+ =2 J - S - 4A"

Thus for the iteration one needs to retain only SK and AK

from previous iteration and evaluate JK after each iteration.

A discussion of the properties and stability of this scheme

will be given in another paper.

b) Initialization of Particles

In the numerical experiments the macroparticles

representing the protons are loaded to satisfy the equilibrium

state described by the distribution function

f(H - wP ,v z) =

AX (H - WPe - K) e[(v z + Av z ) (Zv z - v z

where H is the hamiltonia perpendicular to the external

magnetic field, X0 , w and K are constants, Pe is the

canonical angular momentum and

e(x) = x > 0

0, x < 0.

7!



The ion layer that is described by the distribution function

of Eq. (1) is in a rigid rotor equilibrium1 3 with zero average

axial velocity and with a total axial velocity spread of 2 v
z

The evolution of the system is determined by following

the trajectories of 6000 to 24000 macroparticles in the exter-

nally applied magnetic and self-consistent magnetic fields

produced by the particles.

The distribution function of Eq. (1) requires that at

t = 0 the following constraints be satisfied:

< = > d3 r v f= 0 (2)

< VR> = fd' r vR f = 0 (3)

and
< Ve(r) > = fdzrv af = wr. (4)

To insure that the conditions of Eqs. (2) - (4) are satisfied,

an octet of particles is loaded at each initializing position.

A random value of vz is selected between 0 and v z. Four of

the particles are given the velocity L.v z and the other four

are given - Avz. The radial velocity is assigned in a similar

manner. The final component ve is given by adding and sub-

tracting a random velocity from wr. The result is that each

of the eight particles in an octet is given in a different

position in velocity space. The positions of the particles

in the octet are then randomized within a specified radial region.
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c) Diagnostics

One of the main diagnostics used to determine whether

the system is stable or unstable is the evaluation of the

equipartion of the magnetic energy of the system in the axial

Fourier modes. Using the relations 7 x A = B and 1 2A = -0

in the expression for the magnetic energy of the system

SfJdr 2

and after integrating by parts, we find

S fdr 5.i = - f rJeAedrdz. (5)

Substituting in Eq. (5) the Fourier expansion of and ,

it is obtained

N-1 N-I N-1m 2 1Ti (k+.Z) m
F = -TO f dr r jT a. e "l.i (k Z ' (6)

k=O %,=O m=O

where N is the number of axial cells and the integral over

z has been reduced to a sum over m. Using the identity

N-I 2TiLm

e = N, for L = 0 andLN

m=0 = 0, otherwise

9



Eq. (6) becomes

N-i

C Tr p 0r. fdr r~ Fk a N-k. (7)

k=O

Because both J and A are real quantities

a N-k a k

and

jN-k 3

Substituting these two relations into Eq. (7), the magnetic

energy takes the following form

N/ 2

C 0 f j 0oa0 + 2 Jk ak) rdr,

or

N/ 2

e =e. +E ek,

k=l

where

ek 21 P j (jk ak) rdr,

10



and

eo= - 11 iz fj a* rdr.

The quantities ek may be identified as the magnetic energy

associated with the k - th eigenmode of the system. Initially

most of the magnetic energy in a layer will be in e because

initially Je and Aa do not vary in z. In unstable systems

the dominate non-zero mode corresponds to the number of rings

that the layer has formed.

III. THEORETICAL PREDICTIONS

a) Stabilization with an Axial Velocity Spread

The tearing mode stability properties of a strong ion

layer immersed in a background plasma have been studied

recently by Uhm and Davidson. 7 Using a hybrid model, in

which the thin ion layer is treated kinetically and the back-

ground plasma as a fluid, they have investigated perturbations

with frequencies w< Z . where ^  is the ion cyclotron fre-

quency at the outer edge of the layer. When the radial thick-

ness 2a of the layer is much smaller than its mean dius Ro r

they have shown that perturbations are stabilized when the

axial velocity spread v z of the ions in the rotating layer

exceeds a critical velocity spread given by

AVcrit [- (R0! -rF-T 2  1 (8)

(RoZci) c 3R

11
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where Rc is the radius of conducting wall surrounding the

layer and v is the Budker parameter.

An important feature of Eq. (8) is that the critical

axial velocity spread required for stabilization is independent

of the background plasma and therefore should be valid even when

the plasma density goes to zero as in the computer simulation.

b) Wall Stabilization

A conducting outer wall plays an important role in the

tearing mode. The expression for Lvcrit shows that when

Ro = Rc the system is stable to tearing instability. The

behavior of a system in which all parameters except the wall

radius are held constant is much more complex than equation (8)

would indicate at first sight. This is due to .ci being a

function of the wall radius. Specifically

Wci +- 1) [co 2 x2- 1)- 1] (9)

where w co is the ion cyclotron frequency in the external

magnetic field BO and x = Ro /R c

After substitution of Eq. (9) into Eq. (8) we. obtain

jVcrit VF (x) (10)

12
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where

F(x) = (1-x2)\)

[v(2x 2 -i)-] 2

and

V 2 =(l
2 wv

3-R 0 o co

V is a function of v but is independent of the wall radius.

In the limit of a thin beam, i.e., for a - 0,V is independent

of v. F(x) is a complicated function containing a singularity.

Figure 1 shows the dependence of F(x) on R /R for v = 0.3,

0.8 and 2.0. Because of the singularity F(x) is artifically

suppressed in the plot.

R /Rc = 0 corresponds to no wall or the limit as the

wall is removed to infinity. The other extreme R0/Rc = 1

corresponds to a very thin beam against the conduccing wall.

The lower the value of F(x) the less the thermal spread

required to obtain a stable layer. As shown in Fig. 1 the

function F(x) is characterized by three distinct regions.

For v < 1/3, F(x) is monotonically decreasing as R /Rc

increases. Thus, if a system is stable with no conducting

wall (i.e., Ro/Rc = 0) it is stable for all values of Ro/Rc .

For 1/3 < v < 1, F has a maximum and therefore the system

requires a greater axial velocity spread to be stabilized

13



as the conducting wall moves from far away closer to the

layer. For values of (Ro/Rc) greater than that corresponding

to the peak of F(x), the equilibrium becomes more stable.

For v > 1, the function F(x) has a singularity at

(R /Rc)si n  U + .)/2A The conducting wall has a destabi-

lizing effect on the layer when its radius is such that the

condition R /Rc < (R o/Rc) sin is satisfied. In contrast, when

the wall is located very close to the outer surface of the

layer, i.e., where R /Rc > (R /Rc)si n the stability of the

system is improved. Note that at the singularity equilibrium

exist only when the external magnetic field is equal to zero.

IV. RESULTS OF SIMULATIONS

Simulations using 6 to 24 thousand macro-particles show

excellent agreement with the predictions of Eq. (8) even when

the inequality a << R. is not satisfied, provided that R0 is

set equal to[ (RZ + R2)/2] , where R is the inner and R is
12

the outer radii of the layer.

The noise level of the system varies as (number of

particles) - . Since the number of particles in the simulation

is limited, even a stable system for which the linear theory

would predict no growth, the axial components of the Fourier

spectrum will be non-zero with the equilibrium fluctuation

level determined by the number of particles used in the

simulation.

14
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Although some degree of randomness is provided by the

initialization process, it is well below the final thermal

levels found in stable equilibria. For this reason each

plot of the energy in the eigenmodes is characterized by an

initially fast rising segment which is terminated by reaching

the thermal level, usually after one angular rotation period.

Figure 2 shows the noise levels vs. the normalized time

twR = twci (,v+l) - ' from two simulations with 6000 and 24000

macro-particles stabilized by axial temperature. The two

simulations are identical except for the number of particles.

The noise drops by about a factor of two when four times as

many particles are used.

Figure 3 shows details from the simulation of 6000 macro-

particles. In this run the Budker parameter is 2, the inner

and outer radii of the layer are 20 and 26 centimeters respec-

tively, the wall radius is 32 centimeters, the applied magnetic

field is 10 kilogauss and the thermal spread is 1.2 times greater

than the critical value. The periodic temporal variation of the

individual axial components corresponds roughly to the time

required for a particle with average axial velocity to move a

wavelength.

If the thermal spread 6v is less than Acrit, the modes

grow with time. A comparison of the growth rates of individual

14
modes with those predicted by linear theory for np = 0 shows

a discrepancy of about a factor of two, with the code

15



consistently giving lower growth rates. Figure 4 shows the

time development of an unstable system. All the parameters

are identical to the stable case except that the initial

axial thermal spread is a quarter of the value required for

stability i.e., v z = 0.25 Vcrit* The measurement of growth

rates is complicated by the existence of the ambient noise.

The growth rates are compared to the theory when the long wave-

length axial modes have established a measurable growth rate.

As the layer tears the axial distribution function

changes from the initially square configuration to a more

Maxwellian shape. Figure 5 shows the rather dramatic broadening

that has occurred by the time the growth rates are measured.

The broader profile probably accounts for the discrepancy

between our measurements and the theory. The broadening is

indicative of the bulk heating of the layer. The unstable

spectrum initially grows for short wavelengths and as the

heating stabilizes these modes the evolution continues towards

longer wavelengths.

The correlation between the energy in the dominant

eigenmode and the number of rings that a layer has broken into

is illustrated in Fig. 6. As shown in Fig. 4 the system is

dominated at t = 6 w-1 by the second eigenmode. As expected

the system has formed two well defined particle rings at this

time. In the final stages of development the layer is dominated

16
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by the one mode and consists of a single ring. An examination

of the axial velocity distribution reveals that in this fixed

state that the particles have a spread greater than the criti-

cal spread required for stabilization.

To verify the possible destabilizing influence of a

conducting wall, simulations of two nearly identical but care-

fully selected systems were made. The only external difference

between the two systems was the radius of the conducting outer

wall. The layer extended from 8.8cm to 16.8cm, was immersed

in an external axial magnetic field of 10 kilogauss and had a

Budker parameter of 2. With the outer wall at 32cm an axial

thermal. spread was selected to give stability. This same

thermal spread, however, was not sufficient to stabilize the

layer if the wall radius was reduced to 21cm.

The two cases described correspond to R /Rc = 0.4 and

0.6 for a Budker parameter greater than one as seen in Fig. 1.

A time history of the energy in the axial structure of the two

systems is shown in Fig. 7. For the case R /Rc = 0.4 (the

more distant wall) the layer developes to the thermal level

and does not grow. For R /Rc = 0.6 (the close wall) the layer

exhibits growth in the axial modes well above the thermal level

and tears.

V. SUMMARY AND CONCLUSIONS

These computer simulation experiments have verified the

predictions of Uhm and Davidson's theory about the critical

17
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axial velocity spread required to stabilize the tearing mode

in an infinitely long ion layer. Although the theory has

developed under the assumption that :he thickness of the

layer is much smaller than its average radius, the results

of the simulation have shown that the predictions of the

theory are even valid when a << R0 , provided that R is set

equal to the geometric mean radius of the layer.

The most important conclusion of the present work is

on the effect a conducting tube surrounding the layer has

on its stability. For a very long time, it has been commonly

accepted that a conducting waveguide improves the tearing mode

stability properties of the layer. However, our results show

that when v > 1/3, a conducting wall may have destabilizing

influence on the layer.

18
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Fig. 2 - Noise levels in identical systems with different numbers of macro-
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to 24,000 macro-particles.
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